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Abstract

A review is provided of the recent advances in the derivation of the constitutive equations for large eddy simulation, subgrid scale

modeling, wall modeling and applications of LES to turbulent combustion. The majority of the paper focuses on a review of

two numerical methods for LES in complex geometry: the immersed boundary method and an unstructured mesh scheme. The

latter scheme is applied to LES of a sector of a combustor of an operational gas turbine engine. � 2002 Published by Elsevier Science

Inc.

1. Introduction

The advent of massively parallel computers and af-
fordable workstation clusters has stimulated industry
interest in applying LES to engineering flows. Resolu-
tion of large turbulent eddies is required in many ap-
plications such as those involving turbulent mixing and
aerodynamic noise. Most of these applications require
computation of turbulence in complex geometries. Un-
fortunately, in most cases, numerical methods used for
efficient RANS computations are not appropriate for
LES. In contrast to RANS where the steady or unsteady
solutions are smooth, turbulent flows have broad band
spectra, and most numerical methods used for robust
RANS computations are inaccurate in the representa-
tion of the medium to small resolved eddies in LES. For
example, the use of upwind schemes is prevalent in in-
dustrial CFD and it has been demonstrated that the
inherent numerical dissipation of even the high order
upwind schemes can lead to excessive dissipation of the
resolved turbulent structures (Mittal and Moin, 1997). If
the purpose of using LES is to capture the turbulence
structures, which are not available from RANS, then the
numerical methods used in LES should be sufficiently
accurate in representing their dynamics, rather than re-
move them by artificial dissipation.

Application of LES to industrial problems requires
good subgrid scale models, fast computers, accurate and
robust numerical methods suitable for complex config-
urations and reliable experimental data for validation.

Of these required ingredients, development of numerical
methods has received the least attention. Although sig-
nificant advances have been made in subgrid scale model
development, the models await to be tested in truly
complex heterogeneous turbulent flows, so that the need
for improvements and further research can be identified.
Fundamental advances in numerical algorithms are
needed before this testing can take place and LES can
transition to industry. The focus of this review is on the
development of numerical methods for LES.

In the main body of the paper I describe two nu-
merical methods that have been developed at the Center
for Turbulence Research for LES in complex domains.
Recent major advances in other components of LES are
highlighted in this section. One approach is based on the
immersed boundary (IB) method where body forces are
used to enforce the boundary conditions and hence ac-
count for the geometry. In the past typical calculations
with the IB method were done on a Cartesian mesh, but
recently it has been used effectively in conjunction with
curvilinear and unstructured grids. Applications of this
method include the flow in an impeller stirred tank, flow
around a road vehicle with drag reduction devices and
tip clearance flow in a stator/rotor combination. The
second numerical method is designed for unstructured
grids with arbitrary elements. This is a fully conservative
method and is being used for computations in the
combustor of a gas turbine jet engine.

1.1. Filtering and constitutive equations

With the development of spatial filters that commute
with differentiation, the governing LES equations are
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now rigorously derived in complex domains (Vasilyev
et al., 1998; Marsden et al., 2002). It is desirable for the
LES filter width to be uncoupled from the computa-
tional grid. That is, grid refinement while fixing the filter
width should lead to the solution of the LES equations
instead of the DNS solution. Recent LES studies of
channel flow with three-dimensional spatial filters have
reaffirmed the conclusions of Piomelli et al. (1988) re-
garding consistency of the subgrid scale model and the
filter. For example, a filter that removes energy from a
broad range of scales produces better results when used
in conjunction with a scale similarity model instead of
the Smagorinsky’s model, and a nearly sharp cut-off
filter when used in conjunction with the Smagorinsky
model leads to results in good agreement with the DNS
data (Gullbrand, 2001).

1.2. Subgrid scale modeling

Over the past decade several advances have been
made in subgrid scale modeling which are particularly
appropriate for LES in complex geometries. Complex
flows usually contain multiple flow regimes (boundary
layers, wall jets, wakes, etc.) and it has been demon-
strated that models with a fixed coefficient require tun-
ing of their coefficients in each flow regime. The dynamic
modeling approach (Germano et al., 1991; Moin et al.,
1991; Ghosal et al., 1995) does not suffer from this
limitation because the model coefficient is a function
of space and time, and is computed rather than pre-
scribed. In addition, it has the proper limiting behavior
near walls without ad hoc damping functions and does
behave appropriately in the transition regions. These
are all very important features for LES in complex
domains.

Other significant developments in the subgrid scale
modeling area are Domaradzki’s subgrid scale estima-
tion model, the deconvolution model of Stolz et al.
(2001), and the multi-scale formulation of Hughes et al.
(2001). Domaradzki and Loh (1999) use extrapolation
from the resolved scales to subgrid scales to construct
the subgrid scale velocity fluctuations and stresses. The
model has an adjustable parameter which should be
possible to compute dynamically. Stolz et al’s approach
is an algorithmic procedure as opposed to phenomeno-
logical modeling; it uses regularized deconvolution of
the velocity field to estimate the unfiltered flow field.
Hughes et al. have shown that better results are obtained
if the governing equations for LES are split into the
large and small scale equations, and the eddy viscosity
model is only applied to the small scale equations. Al-
though, this approach is trivial to implement in the
Fourier space and has produced excellent results, ex-
tension to complex geometry appears to be straight
forward with a variational formulation as proposed by
Hughes et al. (2001).

1.3. Wall modeling for LES

One of the pacing items for application of LES to
high Reynolds number boundary layers is the treatment
of the wall layer structures. The subgrid scale models are
not designed to account for the highly deterministic near
wall structures. Therefore, a practical approach for the
treatment of the wall layer has been to model it all
together. Nicoud et al. (2001), using optimal control
theory, have shown that such models should account for
subgrid scale modeling as well as numerical errors. To
account for these errors the control algorithm signifi-
cantly energized the wall layer so that the simulations
could predict the logarithmic mean velocity profile at
very high Reynolds numbers and with coarse resolu-
tions.

Wang and Moin (2001) use the RANS approach in
the near wall region (Balaras et al., 1996), but incorpo-
rate a new dynamic approach to adjust the model co-
efficient. The basic rationale for the adjustment is that
when a RANS type eddy viscosity is used in the wall
layer equations, which includes non-linear convective
terms, its value must be reduced so that the eddy vis-
cosity would account for only the unresolved part of the
Reynolds shear stress. From the unsteady boundary
layer equations one can derive the following expression
for the mean wall shear stress:
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The eddy viscosity, vt was a mixing length model with
constant of proportionality equal to the von Karman
constant, j. The pressure gradient is imposed as a con-
stant in the wall normal direction and is obtained from
the outer LES. If the standard value of j ¼ 0:4 is used,
the predicted wall shear stress would be too large. Wang
and Moin adjust j dynamically to match the LES and
RANS eddy viscosities at the matching points. This
approach has produced results in good agreement with
experiments and wall resolved LES of separated flow
over an asymmetric trailing-edge of a hydrofoil at 10%
of the cost of a wall-resolved LES. In Fig. 1 the dynamic
j is plotted near the trailing edge of a hydrofoil of
thickness h. x1 ¼ 0 corresponds to the trailing edge. It
can be seen that the matched j is significantly below the
value of 0.4.

1.4. LES of turbulent combustion

The most recent and promising application of LES
has been in turbulent combustion (Vervisch and Poin-
sot, 1998). This is an area where the fundamental
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advantages of LES (over RANS) has been called into
question because chemical reactions take place at very
small scales. However, recent developments and results
have proven otherwise. In particular, the so called in-
direct approaches which use the mixture fraction as the
fundamental variable have proven to be both economi-
cal and accurate for prediction of diffusion flames. In the
flamelet approach the chemistry (often complex mech-
anisms) is pre-computed in look-up tables which provide
the chemical variables such as species concentrations
and temperature as a function of the quantities readily
available from LES. The mixture fraction and addi-
tional tracking parameters serve as pointers to the table.

One of the challenges facing computation of tur-
bulent combustion has been the prediction of highly
unsteady lifted flames which occur in gas turbine
combustors. Approaches based on fast chemistry and
steady flamelets predict attached flames leading to in-
accurate turbulence and temperature statistics in the
combustor. The first LES prediction of a lifted flame
was recently completed by Pierce and Moin (2001). To
account for unsteady effects they introduced a reacting
scalar which tracks the progress of the reaction. The
progress variable acts as a new pointer to the flamelet
library. The computations are in very good agreement
with the experimental data in the profiles of velocity,
mixture fraction, primary species concentrations and
their fluctuations. However, prediction of the so called
secondary variables that constitute pollutants such as
CO and NOx are not in satisfactory agreement with the
data. Pitsch and Steiner (2000) have successfully pre-
dicted pollutant concentrations in a piloted methane-air
diffusion flame using an unsteady flamelet model for-
mulation. Pitsch is now applying the same method to the
prediction of the lifted flame as in Pierce and Moin. He
has also shown that accounting for the fluctuations in
the dissipation of mixture fraction (which can only be
obtained from LES and not from RANS) was a key in
the success of these computations.

2. LES with the immersed boundary technique

The IB technique allows the computation of flow
around complex objects without requiring the grid lines
to be aligned with the body surface. The governing
equations are solved on an underlying grid (in principle
it can be structured or unstructured) which covers the
entire computational domain without the bodies; no-slip
boundary conditions are enforced via source terms
(body forces) in the equations (Verzicco et al., 2000b).

A boundary body-force term f is added to the in-
compressible equations to yield,

D�uu

Dt
¼ �q�1r�PP þr � f~mm½r�uu þ ðr�uuÞT�g þ f ð2:1Þ

r � �uu ¼ 0 ð2:2Þ
The effective viscosity ~mm is the sum of the molecular
viscosity and the subgrid-scale viscosity, mt which is de-
termined using the dynamic procedure.

The time-discretized version of Eq. (2.1) can be
written as,

�uunþ1 � �uun ¼ DtðRHSþ fÞ ð2:3Þ
where Dt is the computational time step, RHS contains
the non-linear, pressure, and viscous terms, and the
superscript denotes the time-step level.

In order to impose �uunþ1 ¼ �vvb, on the body, the forcing
f must be,

f ¼ �RHSþ �vvb � �uun

Dt
ð2:4Þ

in the region where we wish to mimic the solid body, and
zero elsewhere (Fadlun et al., 2000). In general, the
surface of the region where �uunþ1 ¼ �vvb does not coincide
with a coordinate line. The value of f at the node closest
to the surface, but outside the solid body, is linearly
interpolated between the value that yields �vvb on the solid
body and zero in the interior of the flow domain. This
interpolation procedure is consistent with a centered
second-order finite-difference approximation, and the
overall accuracy of the scheme remains second-order.

To facilitate the application of the IB method to
complex configurations a geometry pre-processor has
been developed by G. Iaccarino at CTR. The immersed
objects are described using stereo-lithography (STL)
format; the STL representation of a surface is a collec-
tion of unconnected triangles of sizes inversely propor-
tional to the local curvature of the original surface. The
geometrical preprocessor uses the STL surface descrip-
tion and the three-dimensional underlying grid to gen-
erate all the interpolation data required to enforce the
boundary conditions in the IB flow solver. As a first step
the geometrical module performs the separation (tag-
ging) of the computational cells into dead (inside the
body), alive (outside the body) and interface (partially
inside). This step is based on a ray tracing procedure

Fig. 1. Dynamic j for the mixing-length eddy viscosity model at three

time instants. (––) suction side; (- - - -) pressure side.
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(O’Rourke, 1998) used in computer graphics to render
and shade three dimensional objects.

An automatic grid-refinement procedure has been
developed to improve the representation of the body on
the underlying grid. In Fig. 2 a circular boundary is
immersed on an underlying unstructured grid (Fig. 2a).
The tagging function T is shown in Fig. 2b for an initial
coarse mesh; the dark area corresponds to internal cells
ðT ¼ �1Þ whereas the white area corresponds to fluid
cells ðT ¼ 1Þ. The numerical gradient of this function is
shown in Fig. 2c and its value is proportional to the
local grid size. By successively halving the cells until this
gradient exceeds a prescribed value the grid and the
corresponding sharper geometrical representation in
Fig. 2d is obtained.

To be able to use the geometry pre-processor, mesh
adaptation capability must be available in the basic
underlying CFD code. Presently, most LES codes do
not have such a capability. The following examples
demonstrate applications of the IB method in existing
structured LES codes written in cylindrical, Cartesian
and curvilinear coordinates without zonal or mesh ad-
aptation capability.

2.1. LES of a stirred tank mixer

As an example of the IB method with an underlying
mesh in cylindrical coordinates, the LES/IB solver has
been used to investigate the flow in a cylindrical un-
baffled tank stirred by an impeller located at mid–height
of the tank, rotating at constant velocity X (Verzicco

et al., 2000a). The impeller has eight blades equally
spaced over the azimuthal span (Fig. 3). A computa-
tional grid made up of 192
 102
 97 nodes (in the
vertical, radial and azimuthal directions respectively)
has been used. The grid is uniform in the azimuthal

Fig. 3. Tank configuration and computational grid in a meridional

plane (only one out of every six grid-points are shown).

Fig. 2. Grid refinement procedure: (a) IB and initial unstructured grid; (b) tagging function; (c) gradient of the tagging function; (d) refined grid.

P. Moin / Int. J. Heat and Fluid Flow 23 (2002) 710–720 713



direction; a section of it is shown in Fig. 3. No slip
boundary conditions are imposed on the impeller, the
shaft, the bottom and external surfaces of the tank; a slip
boundary condition is imposed on the upper boundary
of the computational domain. The Reynolds number
based on the rotational speed and the blade radius ðRbÞ
is Re ¼ 1636 (Dong et al., 1994).

Flow features are presented in Fig. 4 in terms of
azimuthally averaged velocity vectors, instantaneous
velocity magnitude and turbulent kinetic energy. Quan-
titative comparisons between the simulations and ex-
perimental data is reported in Fig. 5 in terms of radial
profiles of azimuthal, radial and vertical velocity com-
ponents. The present simulations are in very good
agreement with the measurements; in particular the
peaks of the azimuthal and radial velocity close to the
impeller are very well captured. Reynolds-averaged
Navier–Stokes simulations with the j–� model were also
carried out for the same configuration (Verzicco et al.,
2000a) and show some disagreement with the measure-
ments, especially for the radial velocity which is strongly
overpredicted.

The Reynolds number in the configuration consid-
ered is low enough to make LES competitive with
RANS simulations in terms of computational cost; the
disagreement of the RANS predictions with the mea-
sured data is due to the presence of large scale un-
steadiness and heterogeneous flow (laminar/turbulent).
The dynamic model is ideal in this case because of its
adaptability to different flow regimes.

2.2. LES of a road-vehicle with drag reduction devices

The Cartesian IB technique has been used to simulate
the flow around a square-back road-vehicle with drag

reduction appendices attached to its base (Verzicco et al.,
2001). The road vehicle is mounted on a bi-convex
airfoil which is mounted on the floor. The objective is to
study the unsteady dynamics of the wake and the
modifications induced by the drag reduction devices;
experimental data are available for comparison (Kha-
lighi et al., 2001). The baseline configuration is shown
in Fig. 6; the simulations are performed on a Carte-
sian grid consisting of 220
 140
 257 points in the
streamwise, vertical and spanwise directions respec-
tively. The experimental Reynolds number based on the
free-stream velocity and the model height (H) is
Re ¼ 170,000.

Time-averaged results are shown in Fig. 7 for the
three configurations analyzed at Re ¼ 20,000. The flow
patterns in the near-wake recirculation region are very
different; the results for the baseline square-back con-
figuration show a strong interaction between the base
recirculation and the boundary layer on the bottom wall.
The ground separation disappears at Re ¼ 100,000 in
accordance with the experiments.

In Fig. 8 time-averaged streamwise velocity profiles
are shown at two sections downstream of the base for
the square-back configuration. The measurements are
compared with two LES simulations performed at
Re ¼ 20,000 and 100,000; the high Reynolds number
simulations are in better agreement with the experiment.
The defect velocity as well as the length of the recircu-
lation region are accurately captured. The low Reynolds
number simulations agree qualitatively with the mea-
surements but strongly overpredict the thickness of the
bottom-wall boundary layer. The high Reynolds num-
ber results have also been compared to the experiments
in terms of drag coefficients: values of 0.291 for the
square back and 0.223 for the boattail were computed

Fig. 4. Contour plots of azimuthally averaged velocity vectors (a), instantaneous velocity magnitude (b), and turbulent kinetic energy (c) in a

meridional plane crossing a blade.
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from the LES simulations, as compared to 0.3 and 0.23
respectively from the measurements.

This example demonstrates the utility of the IB
method in the design process, where the effect of small
geometrical changes on the overall performance is de-
sired. The use of a simple Cartesian mesh allows per-
forming the simulations very efficiently without the need
to re-generate computational grids for every configura-
tion.

2.3. Immersed boundary method in curvilinear coordinates

A severe challenge to the IB method for computing
high Reynolds number flows is the near-wall resolution.
While mesh embedding, as discussed in the Section 1.3,
or the use of a wall model offer significant relief, the
resolution requirement can be most efficiently addressed
through grid clustering in the wall normal direction if
one set of grid lines is parallel or nearly parallel to the
boundary. Hence, on a Cartesian mesh, the IB method
works best when the bounding surfaces are nearly flat
(as in the previous example) and perpendicular to one
another, or if the object is slender.

At moderate to high Reynolds numbers and in
the presence of complex boundary shapes, it is often

Fig. 5. Radial profiles of averaged azimuthal velocity components in

the middle of the tank. Symbols: experiments (Dong et al., 1994), (––)

present LES; (- - - -) RANS simulations (Verzicco et al., 2000a).

Fig. 6. Road-vehicle configuration and the computational grid in the

symmetry plane (only one out of every four grid-points are shown).

Fig. 7. Flow patterns in the symmetry plane superimposed on contours

of time-averaged streamwise velocity. Re ¼ 20,000 (a) baseline square-

back geometry; (b) square-back with base plates, (c) boat-tail base.
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advantageous to combine the IB technique with a
structured curvilinear mesh topology. This novel ap-
proach is applied in an ongoing large-eddy simulation of
the tip-clearance flow in a stator–rotor combination
(You et al., 2002). A schematic of the flow configuration
is shown in Fig. 9 (Wang, 2000). The chord Reynolds
number is of O(105). The rotor stage simulation is car-
ried out in a frame of reference attached to the rotor,
with the endwall moving at a velocity equal and oppo-
site to the rotor velocity. The tip-gap region between the
rotor tip and the endwall presents considerable grid
topology and resolution challenges. It has been a major
obstacle to the accurate prediction of this flow.

A commonly used mesh topology for the tip clear-
ance flow is the body-fitted H-type mesh. This mesh
topology is often extended to the ‘‘embedded H-type
mesh’’ to facilitate the treatment of the tip-clearance
region (e.g., Kunz et al., 1993). However, the embedded
H-mesh has significant drawbacks. As shown in Fig. 10,
the blade surface in an x–y plane (see Fig. 9 for coor-
dinate definition) is mostly represented by longitudinal
grid lines except near the leading and trailing edges,
where it is represented by the transverse grid lines. The
number of longitudinal grid lines inside the airfoil is
determined by the resolution requirements in the tip-
gap. This causes convergence of the longitudinal grid
lines in the leading and trailing edge regions, leading to
high aspect and stretching ratios, which can cause dif-

ficulties with non-dissipative numerical schemes. The
extremely small y grid spacing in these regions imposes
severe restrictions on the allowable time-step size. In
addition, the four surface points where the longitudinal
and transverse grid lines intercept require special treat-
ment, hence increasing the algorithmic complexity.

The Cartesian mesh IB method is not appropriate for
this flow. The rotor blade is quite slender, and thus
would be suitable for IB treatment if one set of grid lines
could be arranged parallel to the chord. Such an ar-
rangement, however, would make it difficult to impose
the appropriate boundary conditions in the y-direction,
since the flow is not periodic in the direction normal to
the chord. Rather, it is periodic in the direction dictated
by the blade stagger angle. If the Cartesian mesh is de-
fined with one set of grid lines in the direction along the
stagger angle, highly dense resolution will be needed in
most of the computational domain in order to resolve
the boundary layers on the blade surface, resulting in a
large number of grid points.

To overcome the disadvantages of the above meth-
ods, the use of IB method on a curvilinear coordinate
mesh offers an attractive solution. The emphasis here is

Fig. 8. Streamwise velocity profiles in the wake of the square-back

configuration. Symbols: experiments (Khalighi et al., 2001); (- - - -) LES

at Re ¼ 20,000; (––) LES at Re ¼ 100,000.

Fig. 10. Example of an embedded H-mesh near the blade trailing-edge.

Fig. 9. Schematic of flow configuration for LES of tip-clearance flow in

a stator–rotor combination.
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not to save computational cost as in the Cartesian mesh
cases discussed in the previous section, but rather, to
devise an accurate and flexible treatment of boundary
conditions in LES of the tip-clearance flow.

As demonstrated in Fig. 11, the blade surface is
nearly parallel to one set of the grid lines, allowing an
adequate resolution of the boundary layers. No slip
boundary conditions are used on the walls. Periodic
boundary conditions can be applied on the (curved)
upper and lower boundaries. Preliminary simulations of
the 3D tip-clearance flow show satisfactory performance
of the method in terms of resolution and numerical
stability. LES of the flow shown in Fig. 9 is currently
underway at CTR (see Fig. 12).

3. LES on unstructured grids

The US Department of Energy’s ASCI program has
led to an ambitious effort at Stanford to perform an
integrated simulation of a gas-turbine engine. The com-
pressor and turbine are simulated using RANS while
LES is used for the combustor. This includes the dif-
fuser surrounding the combustion chamber, the injec-
tors, swirlers, dilution holes, etc., which constitute a
geometrically very complex configuration (Fig. 16).

The effort spent on grid-generation can be very sig-
nificant in configurations of this kind; unstructured grids
are very desirable in this respect, since the time required
for generating unstructured grids is significantly less
than that for block-structured grids. However, the bulk
of CFD experience with unstructured grids has been in
the context of RANS. As pointed out in the introduc-
tion, RANS typically uses upwinded numerical meth-
ods; although upwinding provides numerical dissipation
which makes the solution-procedure robust, when used
for LES, this robustness severely compromises accuracy.
One solution to this problem is to develop non-dissi-
pative numerical schemes that discretely conserve not
only first order quantities such as momentum, but also
second-order quantities such as kinetic energy. Dis-
crete conservation of kinetic energy ensures robust-
ness without numerical dissipation. The Harlow and
Welch algorithm (1965) possesses this property on
structured grids, and has therefore been widely used for
LES in simple geometries (see also Morinishi et al.,
1998).

Mahesh et al. (2001) have developed a non-dissipative
algorithm for turbulent flows computed on unstructured
grids. A novel feature of their approach is that it dis-
cretely conserves kinetic energy, making it both robust
and accurate. A predictor–corrector approach is used to
advance the momentum, continuity and the scalar
equations.

Discrete energy conservation ensures that the sum:X
cvs

vnW
! ð3:1Þ

has only contributions from the boundary faces; here
cvs refers to the grid volumes and ~WW is the non-linear
term in the Navier–Stokes equations. The form of the
convection term is known to affect non-linear stability of
the discrete equations. The rotational form; i.e.,
~uu
 ~xx �rq2, and the skew-symmetric form, ½ðuiujÞ;j þ
ujui;j�=2 have been quite popular for this reason. On
tetrahedral or triangular grids, staggered storage of
variables allows an elegant implementation of the rota-
tional formulation. The face-normal velocities determine
the vorticity component along the edges of the tetrahe-
dra (in 3D), and nodes in (2D). This allows the circu-
lation theorem to be imposed as a constraint on the
algorithm (Mahesh et al., 2000).

Fig. 11. Curvilinear mesh used in conjunction with the IB method for

tip clearance flow (1/4 lines plotted).

Fig. 12. Streamtraces in the tip-clearance region obtained using the IB

method on a curvilinear mesh.
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While tetrahedral elements allow complex geometries
to be easily meshed, they are not the most preferable
computational elements for turbulence simulations.
Hexahedral elements are preferable-fewer hexahedra fill
up a volume; hexahedral elements also generally yield
more accurate solutions. The grid may therefore be a
combination of arbitrary computational elements; it is
partitioned, and then reordered to allow for data lo-
cality on each processor and efficient message-passing
between processors. Fig. 13 shows scaling data from a
run that used up to 1000 processors on ASCI Red––a
cluster of 9000 Intel Xeons. Based on the observed
speed-up, a five million nodes grid is estimated to use a
thousand processors effectively, suggesting that parallel
performance is quite satisfactory. The algorithm has
been implemented for parallel platforms, and has been
tested for a variety of canonical incompressible flows
(Mahesh et al., 2000). The robustness of the algorithm is
illustrated in Figs. 14 and 15 where even in the inviscid
limit, or at very high Reynolds numbers where the dis-
sipative scales are not resolved, the numerical solution
mimics the analytical behavior. In contrast a non-dissi-
pative scheme that does not conserve kinetic energy is
seen to blow up after some time at high Reynolds
numbers. Note that these are very coarse DNS compu-
tations and are intended to only demonstrate robustness
(not accuracy).

This scheme is being used for LES of a gas turbine
combustor. An instantaneous contour plot of the ve-
locity magnitude in the mid-plane of a combustor sector
is shown in Fig. 17. No slip boundary conditions are
imposed. To demonstrate the importance of accurately
accounting for Reynolds number effects (and hence re-
moval of numerical dissipation) the instantaneous con-
tours of velocity magnitude from a simulation at a
significantly lower Reynolds number are shown in Fig.
18. The flows at the two Reynolds numbers are quali-
tatively very different. In the high Reynolds number case
the effect of swirl is evident in the outward expansion of

the shear layers and enhanced mixing, whereas in the
low Reynolds number flow the flow from the injector is
jet like without significant mixing.

4. Conclusions

In the past ten years significant progress has been
made in the LES technology including development of
commuting filters, subgrid scale models and numerical
methods for complex configurations. LES has also
shown great promise in application to turbulent com-
bustion. Application of LES to industrial problems re-
quires accurate and robust numerical algorithms for
complex geometry. Validation in complex flows would
also motivate further research and developments of

Fig. 13. Results of a scaling study on the ASCI Red computer. The two

curves at the bottom left of the figure correspond to grids of 64,000 and

216,000 nodes respectively.

Fig. 14. Illustration of the importance of discretely conserving kinetic

energy. The kinetic energy is plotted against time for the Taylor

problem at Re ¼ 109. The energy-conserving scheme is robust while a

non-dissipative scheme that only conserves momentum blows up after

some time.

Fig. 15. Kinetic energy in isotropic turbulence is plotted against time at

varying Reynolds numbers. Note that the (unstructured mesh) scheme

is robust even at the highest Reynolds numbers.
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Fig. 18. Contours of instantaneous velocity magnitude in LES of flow in the P&W combustor geometry at low inlet Reynolds number.

Fig. 16. A cross-section of the combustor geometry and the computational grid.

Fig. 17. Contours of instantaneous velocity magnitude in LES of flow in the P&W combustor geometry. The cross-sectional views in the second row

are obtained from the locations indicated as D, E, F and G in the top figure.
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subgrid scale models which have been tested extensively
only in canonical flows. Two numerical methods for
LES in complex configurations were presented: a con-
servative unstructured mesh method used for simulation
of flow and combustion in a gas turbine combustor, and
the IB method used for flow computations in a stirred
tank mixer, over a road vehicle and the tip clearance
flow in a stor/rotor combination.
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